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NOMENCLATURE 

A -  Rate of d i r e c t  formation of H, or D, i n  rad io lys i s  of H,O or D,O, 
1 moles, E’, sec- . 

B -  Rate of d i r e c t  formation of OH or OD i n  radiolysis  of H20 or D,O, 
moles, 1 sec- . 

C - Rate of d i r e c t  formation of H,O, or D,O, i n  radiolysis  of K,O or D,O, 
1 moles, sec- . 

F - Rate of d i r e c t  formation of e- i n  rad io lys i s  of H,O or D,O, moles, 
R-’, sec-l .  aq 

Feff - Effective r a t e  of formation of e- 

I - Rate of absorption of radiat ion energy, w/cc. 

K,K, Kl and K, - Constants defined i n  t ex t .  

K ” -  Ratio of pressure of H, or D, t o  t h a t  of 0, i n  autoclave with gas 

as  used i n  Eq. 10, p. 18. 
aq 

/ 

space. 

L - Rate of d i r e c t  fo rmt ion  of HO, or Do, i n  ra.diolysis of H,O or D,O, 
moles, L - ~ ,  sec- 1 . 

I LITR - Low In tens i ty  Test Reactor. 

M - Signif ies  molar. Also used as a n  abbreviation of moles i n  expres- 
sions of un i t s  such as  M, sec” and sec-l, M-l, 6. 

(P) - Summation of concentrations of rad io ly t ic  products of water, M. 

( P ) ~ ~  - Summation of steady-state concentrations of rad io ly t ic  products 
of water, M. 

P - Pressure. 

P‘- Pressure of gas prevail ing i n  autoclave with gas space, p s i .  

R - Gas constant - 1 . 2 1  ps i ,  1, mole-’, OK’ l .  

S+n - Designates oxidized form of so lu te  cation. 

S +(n-l) - Product of addition of one e lec t ron  t o  oxidized form of solute  
cation. 

T - Temperature, O K .  

V - Volume of gas space i n  autoclave, 6. 

V i  - Volume of l iquid ii autocla.ve, A. 
€5 



X 

a - Concentration of solute, M. 

a! - Concentration of excess oxidant (H,O, or 1/2 O,),  M. 

-a ! -  Concentration of excess hydrogen, M .  
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An Evaluation of The Chemical Problems 

Tungsten Water Moderated Reactor, Addendum 1, 
Associated With The Aqueous Systems i n  The 

G. €I, Jenks, E, G.  Bohlmnn, and J. C. Griess 

I. Introduction 

Additional considerations have been made of methods of predict ing 

the e f f ec t s  and extent of radiolysis  of water and solut ions i n  the TWMR 

from experimental data which might be obtained a t  much lower i n t e n s i t i e s  

i n  ex is t ing  reactors.  The work has included consideration of:  (1) ex- 

perimental and theore t ica l  i n f o r i t i o n  on the re la t ionship  between in- 

tens i ty ,  I, and concentrations of rad io ly t ic  products, (P)ss, i n  pure 

water, (2)  reactions which might occur i n  solutions under i r rad ia t ion  

and the e f f ec t s  of these reactions on the relat ionship between 1 and 

(P)ss, and on the relat ionship between I and fac tors  which might a f f e c t  

the s t a b i l i t y  of the solution, (3)  the relat ionships  between rad io ly t ic  

behavior of solutions and water caused by fast electrons and by reactor  

radiat ions,  and (4)  feas ib le  experiments which would y i e l d  information 

from which the behavior of solutions under i r r ad ia t ion  i n  the TWMR 

could be predicted. Calculations employing a revised computer-code 

were ,made t o  determine the  relationship between I and rad io ly t ic  be- 

havior f o r  cer ta in  assumed conditions. The r e su l t s  of these were then 

used as bases f o r  estimating behavior under other assumed conditions. 

Considerations of radiolysis  under fast electron i r r ad ia t ion  were made 

i n  order t o  determine whether the r e su l t s  of feasible  Van de Graaff ex- 

periments a t  i n t ens i t i e s  ranging up t o  those which w i l l  p reva i l  i n  the 

ThPIR could be used t o  es tab l i sh  the relat ionship between I and (P)ss 
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and between I and solution s t a b i l i t y  during reactor  i r rad ia t ions .  

This addi t ional  work was prompted i n i t i a l l y  by the  need t o  have a 

c learer  understanding of how data obtained i n  low-intensity reactor  ex- 

periments, such as those sugges-bed prsvimsly, '  would be employed i n  

determining the extent of water decomposition s,t M f c t ens i t i e s ,  and 

by a desire  t o  learn whether experimerital i n 2 o m t i o n  on water decompo- 

s i t i o n  obtained a t  two or more in t ens i t i e s  i n  reactors  eouldbe  ex- 

t rapolated d i r ec t ly  t o  "WMR i n t ens i t i e s .  However, sone possible, bu t  

previously unrecognized, aspects of rad io lys i s  of so lu t iors  have sub- 

s t a n t i a l l y  influenced the direction of the  work. 

been recognized t h a t  if cer ta in  l i ke ly  conhinations of r a t e  constants 

f o r  the reduction and oxidation of solute-cations prevail ,  a large 

f r ac t ion  of the  cations w i l l  be i n  the  reduced form a t  the steady-state.  

Since the presence of reduced material  may a f f e c t  the extent  of solvent 

decomposition as well  as the solution s t a b i l i t y ,  as w i l l  be discussed 

later, it lcas been necessary t o  considey methods of t e s t i n g  the  e f fec ts  

of reduced solute  and of predicting the e f f ec t s  at TWMR in t ens i t i e s .  

For reasons which w i l l  be presented later, c i rcu la t ing  loop experiments 

In  par t icu lar ,  it has 

1 of the  type suggested previously a re  not su i tab le  f o r  studying radi- 

o lys i s  of solutions i n  which substant ia l  reduction may occur. 

The purpose of t h i s  addendum is t o  present the r e su l t s  of tinis ad- 

d i t i o n a l  work. 

11. Calculations 

The computer code described previously2 was modified t o  include 

react ions 24 and 25. 
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+ s+" -3. +(n-l)  24. e-aq ' S  

S+n + OH- 
+( n-1) ._._._. + 

25. OH + s 
+n where S 

t i o n  (Sm+3, Gdt3, Cdt2, H3B03) and S +(n-l) represents the reduced form 

of t h i s  species. These reactions were inclucted by adding terms t o  the 

appropriate equations expressing the equal i ty  of rates of formation and 

disappearance of a rad io ly t ic  spec ie2  as shown i n  the  following: 

represents the so lu te  species included i n  the i n i t i a l  solu- 

2 ( ~ ~ 0 ~ ) ~ ~  + 4 ( 0 ~ ) ~ ~  + 3(Ho2>ss + ( 0 ~ ) ~ ~  

+ (s+(n-l))  
where, a, is  the concentration of solute-cations, (S'"),, ss' 

X and Y represent the terms i n  these equations as wri t ten previously, 

and k24 and k 

i s  the material  balance equation and has been modified t o  include the  

concentration of reduced so lu te .  Terms f o r  the concentrations of the  

a re  the rate constants f o r  reactions 24 and 25. Eq. 7b 25 

H, and OH were a l s o  added t o  make the equation complete. rad ica ls  e- 

It may be noticed t h a t  the  formation of an appreciable concentration of 
aq' 

reduced species, ( (S +(n-l)) ss equal t o  ak24(e- aq ) ss /(k24(e-aq)ss + 

k (OH)ss) has the  same e f f e c t  on the material balance equation as the 

+(n-l) 
25 

introduction of excess oxidant a t  a cancentration equal t o  0.5(S )ss 
* 

See Appendix 1. 
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A l l  of the  previous13 employed equations and react ions involved a r e  

l i s t e d  i n  Table 1. Eqs .  5b, lb, and 7b a r e  revis ions of Eqs.  5, 1, and 

7 of Table 1. 

Rate constants f o r  90°C, estimated previously2 f o r  all react ions 

except 24 and 25, were used i n  all calculations.  The values used f o r  

rates of production of rad io ly t ic  species are l i s ted  i n  Tables 2 and 3. 

The electron-radiation values were based on an  LET-value of 0.02 ev per  

and G-values used previously' for t h i s  LET. The reactor  values were 

based on: (1) an assumed r a t i o  of 2 f o r  the energy deposition rates from 

neutrons and y-rays, (2) assumed mT-values of 8.5 and 0.02 ev per for 

neutrons and prays,  respectively, and (3) G-values used previously f o r  1 

rad ia t ions  with these LET-values. 

I n  one portion of t h e  work reported here, it w a s  of i n t e r e s t  t o  

extrapolate  experimental data a t  a temperature of 3 6 O C  t o  a temperature 

of 90°C. 

extrapolation. The upper curve represents calculated values fo r  the 

(H2)sS i n  the  HFIR core at several temperatures. 

The information i l l u s t r a t ed  i n  Fig. 1 was employed f o r  t h i s  

These values were ca l -  

culated using a computer code and estimated ac t iva t ion  energies f o r  r a t e  

constants as reported previously.* 

curve a re  those reported by Hochanadel 

The points  f a l l i n g  near the  lower 
3 fo r  the  pressures observed i n  a 

capsule of water i n  the ORNL graphite p i l e  a t  several  temperatures. The 

dotted curve i s  drawn p a r a l l e l  t o  t he  upper curve. There i s  subs tan t ia l  

agreement between the calculated and experimental values f o r  r e l a t i v e  

pressures a t  d i f f e ren t  temperatures. 
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111. Relationship Between (P)ss and I i n  Water. 

A. Calculated Values 

Calculated values fo r  the steady-state concentrations of radioly- 

t i c  products i n  pure water under exposure to reactor  radiat ions and t o  

electrons at several  i n t ens i t i e s  are l isted i n  Tables 4 and 5. The 

(H2Iss values a re  plot ted - vs the sqxare-root of i n t ens i ty  i n  Fig. 2. 

For each type of radiat ion the points f a l l  near a s t ra ight  l i n e  repre- 

sented by the eqmtior,, 

where K is  a constant f o r  a given type of radiat ion.  

The (H+) 

10-%I f o r  the 

cluded i n  the 

constants f o r  

was assumed t o  be zero fo r  the electron calculations and 

reactor  calculations.  Since the only react ion f o r  H in -  

code is the reaction with e- and since the rate 

react ion of H202, 02, and €I with t h i s  r ad ica l  are ap- 

+ 

aq + 
+ proximately equal, it was assumed that the e f f ec t  of the H was neglig- 

ib le  i n  the  reactor calculations even a t  the  larest in t ens i ty  ( (H2)ss 

equal about 10 M) . This assumption was ve r i f i ed  by the r e s u l t s  of one 

calculat ion f o r  2.5 w/cc i n  which it was assumed that (H ) equaled 0.0. 

A s  shown i n  Table 4, the calculated (H2)ss i n  t h i s  case was 2.17 x 10-4M 

compared with the value of 2.23 x 10-4M found when ( H  ) was 10-5M. With 

electron i r radiat ions,  f o r  which (H2),, values w e r e  near 10-51, the  low 

(E ) is more important as w i l l  be i l l u s t r a t e d  i n  a following paragraph. 

"he slight deviations of the  calculated values from a straight l i n e  a re  

probably the r e s u l t  of small. deviations from s t r i c t  praportiorrali ty be- 

tween the assumed ra t e s  of production of r ad io ly t i c  species and I. 

-4 

+ 

+ 

+ 
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B. Discussion 

Ghormley and Schwarz5 have demonstrated experimentally that the 4 

steady-state concentrations of H2, 02,and H202 produced i n  pure H20 by 

absorption of e lectron e r x r ~ y  increase as the square-root of the rate 

of energy absorption. That is, the re lat ionship 'between concentration 

and power density i s  of the general f a m  of Eq. 1, 

densi t ies  of about 1 and 15 w/cc were emplayed by the respective in-  

M a x i m a  parer 

vestigators.  Temperatures were near room temperature. Schwarz 5 has 

argued that a square-root relationship of the form of Eq, 1 prevai ls  

f o r  a l l  the rad io ly t ic  species when the equations expressing equal i ty  

between rates of formation and destruction of rad io ly t ic  species are of 

the general form i l l u s t r a t e d  i n  Eq. 2, and when the excess oxidant 

concentration i s  zero. 

In pure water, the equations deduced f romthe  known reactions are of 

the  form of Eq. 2 ,  and Schwarz argued 5 that a square-root re la t ionship 

i s  expected t o  prevail .  

i n  which the assumed reactions f o r  pure water are a l so  of the  form of 

Eq. 2, confirm the  square-root relationship f o r  reactor  radiat ions and 

electrons.  Accordingly, the square-root re la t ionship of Eq. 3, is be- 

The calculations made w i t h  the computer code, 

l ieved t o  be w e l l  established fo r  pure water. A relat ionship of the 

same form w i l l  prevai l  f o r  D20, but the value of K w i l l  differ somewhat 

from that f o r  I% 0 since the  re la t ive  and absolute yields of rad io ly t ic  

species d i f f e r  somewhat between H20 and D20. 
2 
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IV. Estimation of (H2)ss i n  Pure-Water Moderator of TWMR. 

A s  previously reported and as shown again i n  Fig. 2, the (H2)ss 1 

a t  150 w/cc of reactor  radiat ions determined fron estimated r a t e  

constants and G-values i s  1.7 x lo-% (- 35 ps i )  a t  9OoC. N o w  t h a t  t he  

square-root re la t ionship i s  firmly established we a re  able t o  provide 

addi t ional  evidence i n  support of t h i s  calculated value. 

workers measured a (H2),, of about 3 x 10-%l i n  pure water i n  capsliie 

experimxts ir; the ORNL, graphite rewtm w3ere a ratio of 2 prevailed 

t o r  neutron t o  y-ray energy depos i t im  rates.' m e  power density was 

about 5 x w/cc and the temperature was  presumably about 35 C. Ex- 

Allen arLd co- 
6 

7 

3 0 

t rapolat ion of these r e s u l t s  t o  150 w/cc on the  basis of a square-root 

re la t ionship leads t o  a value of 5.2 x 10-51 H2 a t  35'C. Adjustment of 

these extrapolated values t o  gO°C on the bas i s  of the information i n  

Fig. 1 leads t o  values i l l u s t r a t e d  i n  Fig,  3. As can be seen, these 

extrapolated values d i f f e r  from those estimated by computer-calcula- 

t ions  by a factor  of only 1.7. "his i s  considered t o  be good agreemeat. 

1 It has been argued previously that; the y ie lds  of rad io ly t ic  

products do not  change subs tan t ia l ly  with pmer  densi ty  up t o  150 w/cc. 

"he va l id i ty  of t h i s  argument i s  supported by the f a c t  t h a t  calculated 

values f o r  50 w/cc (1 neutron and 1 y-ray) i n  the ETR were i n  su3- 

s t a n t i a l  agreement with the  experimental values .lY2 The rate constants 

are the only other parameters a f fec t ing  steady-state concentrations i n  

pure water, aad these a re  not expected t o  change with in tens i ty .  

The s i tuat ion w i t h  respect t o  expected (R2)ss i n  the TWMR moder- 

ator when the water i s  pure may now be summarized as follows: The 
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(H2),, may confidently be expected t o  be below the  to le rab le  l i m i t  of 

about 3 x lo-% unless the radiolyt ic  yields change subs tan t ia l ly  upon 

increasing the  power densi ty  from about 50 t o  150 w/cc. Experiments i n  

ex is t ing  reactors  w i l l  not provide any addi t ional  information on the  

e f fec ts  of power density or  yields since the maximum reactor  i n t ens i t i e s  

available f o r  experimentation a re  thought t o  be i n  the range of 15 t o  

20 w/cc. Additional information on the  I _.. vs y ie lds  w o u l d  be obtained 

i n  experiments employing fast electrons at  i n t e n s i t i e s  up t o  150 w/cc 

as proposed i n  l a t e r  paragraphs. Information w i l l  a l so  be forthcoming 

from the  HFIR which will operate a t  a maxinnun of 100 w/cc i n  the  moder- 

a t o r .  

neutron t o  y-ray energy deposition rates i n  H20 is  2 and the tempera- 

t u r e  i s  gO°C will be needed as part of the invest igat ion of radiolysis  

An in-pi le  experiment w i t h  H20 and/or D20 i n  which the  r a t i o  of 

i n  poison-control solutions as  discussed i n  later paragraphs. This ex- 

periment could presumably be carried out at  LITR i n t e n s i t i e s  (0.5 w/cc) . 
It may be noted tha t  the  radiolysis of the moderator can be sup- 

+ pressedby the addi t ion of excess H 

of r ad ica l  scavengers a t  a concentration of 10-5M or  less w i l l  probably 

not increase (H2)ss above the tolerable l eve l .  

cussed i n  following paragraphs. 

or  H2 o r  both. Also, the addition 

These fac tors  are dis- 

V. 

Reactor Radiations. 

Estimation of (H2),, i n  Water Containing Excess H2 and Exposed t o  

The r e su l t s  of calculations of (H2),, i n  water containing excess 

H2 are i l l u s t r a t e d  i n  Fig. 4. 

rad io ly t ic  species are l is ted i n  Table 4. 

The calculated concentrations of a l l  

The excess (H2) i s  given i n  
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the f igure  and table  by the  negative value of QI. 

Substantial reductions i n  the  extent of rad io lys i s  and i n  the 

(H2)ss can be accomplished by the addi t ion of excess He. 

concentration i s  apparently near 5 x 10 

and (H202)ss a t  150 w/cc of reactor  radiations are 5.5 x 10 M and 

5 x 10-%. The (02)ss is  oegl igible .  It is  evident t h a t  fio fu r the r  

The optimum 
-4 M where the expected (He)ss 

-4 

-4 decrease i n  (H2)ss with increasing (H2)excess above 5 x 10 M is  

possible.  

+ V I .  Estimation of i n  Water Containing H a t  Several 

Concentrations. 

The calculated e f f e c t s  of converting some or  most of the e- t o  
aq 

H by the addition of H+ t o  water are i l l u s t r a t e d  i n  Fig. 5 .  The calcu- 

la t ions  f o r  reactor  radiat ions show, somewhat surpr is ingly,  t h a t  the  

conversion of a subs tan t ia l  f rac t ion  of e-  

decrease i n  (H2)ss. 

low ra t e  constant f o r  react ion of H with H202 t o  produce OH, the  

conversion would r e s u l t  i n  higher values of (H2)sse 

r e su l t s  showed t h a t  the  conversion a l s o  resul ted i n  a lowered r a t i o  of 

t o  H produces a subs tan t ia l  
aq 

It was ant ic ipated t h a t  because of the  r e l a t i v e l y  

However, the 

(02)ss t o  (X202)ss and a lowered concentration of (H02)ss. These 

changes indicate t h a t  the importance of the chain react ion which 

includes H02 formation and which leads t o  the  removal of rad ica ls  was 

reducedby the conversion. In  the case of the electron i r r ad ia t ions  

the conversion of a f r ac t ion  of the e- t o  H resulted,  as expected, 

i n  a marked increase i n  ( H2)ss * 

would produce a benef ic ia l  e f fec t  under e lectron i r r ad ia t ion .  

aq + It is  not known whether a higher (H ) 
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It may be noted t h a t  the  concentrations of rad io ly t ic  species i n  

solutions containing an appreciable (H ) do not follow an equation of 

the form of Eq. 1. 
aq 

with H a t  a constant concentration i s  not of the general form of Eq. 2 ,  

It should a l s o  be noted tha t  one e f f ec t  of the addi t ion of H+ w i l l  

+ 

This is  not surprising since the react ion of e- 
+ 

be t o  repress the ionization of KO2 and thereby decrease the rate of 

interact ions of H02 t o  form H 0 and 02. 

calculated e f f ec t s  of ac id i f ica t ion  on (H2),, . 
and experiments are required t o  determine the ac tua l  e f f ec t s  of ac id  

This change may alter the 2 2  

Additional calculations 

on OQss* 

V I I .  Reactions i n  Poison Control Solution Under I r rad ia t ion .  

In  considerations of the radiolysis  of the poison control solu- 

t ions  it is  necessary t o  include reactions which are ham or  which can 

be postulated t o  occur between the rad io ly t ic  products of water and the 

solutes .  Reactions of probable importance are l is ted i n  Table 6 and 

discussed i n  subsequent paragraphs. 

l i k e l y  t o  be of importance are listed i n  Table 7. 

Other reactions which are l e s s  

A. Reducing Reaction 

The cations, Gd+3, Cd+2, and H 0 are known t o  react  with 93 - 
e and the  rate constants f o r  the ions bu t  not for H 0 have been 

reported. The reaction w i t h  H 0 is  thought t o  be of the dissociat ive 

capture type:' primarily, since sodium tetraborate  does not react  w i t h  

aq 93 
9 3  

(It should be noted, however, t h a t  sodium tetraborate  may reac t  

The reactions w i t h  Sm, Gd, and Cd are very l i ke ly  of the 

- 8  
aq 

e 

with OH ). 

nondissociative capture'' type. 

8 
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The standard oxidation poten t ia l  f o r  Sm+3-Sm+2 indicates a 

poss ib i l i t y  that 

H," and it i s  here considered unlikely t h a t  Gd"3 or H BO are reduced 

by H. 

may be reduced by H. Cadmium i s  not reduced by 

3 3  

B. Oxidizing Reactions 

The species formed by reaction of Sm, G d  or C d  with e- may be 
aq 

re-oxidizedby reaction with one or  more d i f f e ren t  rad io ly t ic  species 

or with H a 

Reaction 25 - The reaction with OH i s  designated as a radical-scavenger 

+ The l a t t e r  reaction (No. 38) m y  not occur with Sm 11. 

reaction because the combination of t h i s  and the reduction reaction 

leads t o  the removal of a rad ica l  pair, e-  -OH. 
aq 

Reaction 35 - Reactions of the reduced species with H is a l s o  a 

scavenger reaction because t h i s  reaction r e s u l t s  i n  the  formation of 

H2 from reaction of e-  and H. 
aq 

Reaction 36 - Reaction of the reduced species with H202 leads t o  the  

formation of OH, 

acted d i rec t ly  with H202. 

reaction 36. 

This product would a l so  have been formed i f  e- re -  
aq 

Hence, no scavenger act ion r e su l t s  from 

Reaction 37 - Reaction of the H02 with the reduced species probably 

does not e f fec t  any scavenger act ion and may be somewhat benef ic ia l .  

These ten ta t ive  conclusions are based on the  consideration t h a t  H02 i s  

formed i n  reactions that a re  not d i r ec t ly  associated with the presence 

of the solute, and tha t ,  normally, much of the  H02 reac ts  with OH t o  

form H20 and O2 (reactions 18 and 18b). 

takes part in  a chain reaction which r e s u l t s  i n  the formation of H20 

That is, the Hog normally 
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from H and OH o r  e- 

h r  products of radiolysis .  

tend t o  break th i s  chain. 

and OH without recoxbination of any of the  molecu- 
aq 

The removal of H02 i n  react ion 37 would 

+ Reaction 38 - Reactions of reduced species w i t h  H t o  form H would not 

e f f e c t  a scavenger action. 

Rate Constants - The ra t e  constants f o r  these possible oxidizing re- 

act ions are unknown. 

other ions are oxidized are known and are included i n  Table 6. 

s iderat ions of the r a t e s  f o r  these other reactions suggest t h a t  re- 

act ions 25 and 35 w i l l  be fast, and that reactions 36 and 37 w i l l  be 

much slower. 

have been found i n  the l i t e r a tu re ,  bu t  considering the f a c t  that two 

pos i t ive ly  charged ions reac t  it seems l i k e l y  that the rate of reaction 

w i l l  be slow. 

Rate constants f o r  analogous reactions i n  which 

Con- 

No rate constants for  reactions analogous t o  react ion 38 

C. H2S04 Reactions 

It has been reported t h a t  B O 4  reacts  with OH and the  r a t e  

constant has been given as shown f o r  reaction 39. It is l i k e l y  that 

the oxidized species w i l l  r eac t  rapidly with e- aq, H and S + ( n 4  to 

e f f e c t  the coxbination of OH w i t h  a reducing rad ica l  and thus e f f e c t  a 

scavenger action. 

V I I I ,  

Solutions. 

Effects of Reactions 24 and 25 on Radiolysis of Poison-Control 

As discussed i n  the preceding section ( V I I ) ,  it is established 

that most of the solutes  which have been suggested f o r  poison-control 
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solutions w i l l  be reduced by e- 

probably be re-oxidized i n  one or more of the reactions l i s t e d  i n  Table 

3. (Reaction 24 as used i n  t h i s  discussion symbolizes reaction 31, 32 

or  33). 

(1) an increase i n  the steady-state concentrations of molecular 

products of water due t o  preponderance of those oxidizing reactions i n  

which radicals a re  destroyed (scavenged), and (2) the formation of an 

The reduced Sm, Gd, and C d  w i l l  
aq' 

Possible r e su l t s  of such reactions which are of concern are: 

+(n-1>) appreciable steady-state concentration of reduced species, (S 
ss, 

The formation of appreci- due t o  re la t ive ly  low rates of re-oxidation. 

able (S 

stabil i ty may be affected.  

be very insoluble16 and thus might prec ip i ta te .  

the precipi ta t ion of C d  metal from CdSOq solutions under e lectron ir- 

radiat ion has been observed experimentally, 

t r a t i o n  of excess oxidant equal t o  0.5(s +(n-l)) would be formed, and 

t h i s  would increase the extent of decomposition of water even i n  the 

absence of a scavenger e f fec t ,  and (3)  The experimental requirements 

f o r  investigating solution radiolysis  w o u l d  be a f fec ted  as discussed i n  

l a t e r  paragraphs. 

+(n-l)) is  of concern f o r  several  reasons: (1) The solut ion ss 

For example, the +2 ra re  ea r th  su l fa tes  may 

In  the  case of cadmium, 

11 (2) An e f f ec t ive  concen- 

In  order t o  provide some bases f o r  estimating the  extent of such 

e f f ec t s  i n  TWMR solutions and t o  aid i n  the  design of experiments t o  

determine radiolyt ic  behavior a t  TWMR conditions, computer calculations 

were made of steady-state concentrations f o r  a var ie ty  of assumed values 

of a, k24, k2,-, I and 0. 

employed i n  the calculations.  

8-12. Values of (H2)ss are p lo t ted  vs I l l2  i n  Figs.  6-9. The r e su l t s  

Electron as well  as reactor  radiat ions were 

Most of the  r e s u l t s  are l is ted i n  Tables 
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show that i n  the presence of the  postulated scavenger action, the (H2)ss 

and (H202)ss are appreciably greater than those prevail ing i n  pure water 

a t  the same in t ens i t i e s .  

t he  scavenger solut ion t o  t h a t  i n  pure water is  not constant but  

decreases with increasing I. 

reactor  radiat ions f o r  the two different  sets of rate constants are 

about 2 and 2.7 compared with values of 14 and 22 at 0.5 w/cc (Fig. 6) .  

To a rough approximation, the calculated value of (H2)ss i n  scavenger 

solutions can be expressed by Eq. 3. 

However, the r a t i o  of (H2)ss o r  (H202)ss i n  

The values of the r a t i o  a t  150 w/cc of 

where K is  the same constant as that appearing i n  Eq. 1 and % i s  a 

constant f o r  given values of k2b, k 

radiat ion.  

a, and f o r  a given type of 
25' 

As stated previously the value of K is a l so  dependent on 

t h e  type of radiation. 

The (H202)ss is  approximately equal t o  (H2),, with reactor  radi- 

a t ions,  t h a t  is, (02)ss is negligible. 

radiation, ( 02)ss i s  appreciable. 

t r a t i o n s  of radicals  and I i n  scavenger solutions is not t he  same! as 

that  f o r  (H2),, or  (H202)ss. 

re lat ionship f o r  (OH)ss. 

Eq. 4 which i s  derived from reaction 12, (Table 6 of ref. 1). 

However, under e lectron ir- 

"he relat ionship between the concen- 

This may be seen by considering the 

To a close approximation (OH)ss is  given by 

where A i s  the rate of d i r ec t  formation of H2 i n  radiolysis .  

s t i t u t i n g  K21 f o r  A and subst i tut ing from Eq. 3 f o r  

Sub- 

we have 
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MI c ( 5 )  moss = 
k12 ( K1+KI1") 

It may also be shown t h a t  the  r a t i o  of calculated (H202)ss t o  (OH)ss i s  

expressed roughly by Eq. 6 f o r  reactor exposures, 

and thus the value of the  r a t i o  decreases w i t h  increasing I as may be 

seen a l so  by consulting the  tabulated r e su l t s  of calculations.  

though Eq. 6 cannot be considered applicable fo r  e lectron i r r ad ia t ion  

because (H202)ss cannot be assumed equal t o  (H2)ss, the r e s u l t s  of the 

calculations show that the value of 

I by amounts comparable t o  those found with reactor  radiat ions.  

Al- 

decreases with increasing (H202)ss oss 
25 

Appreciable concentrations of S +(n-l) a re  formed w i t h  k2rc and k 

8 -1 M-l equal t o  4.7 x lolo and 3 . 7  x 10 sec , , j .  However, very low 

concentrations were found w i t h  k24 and k and 

4.7 x 10". The values of (S +(ngl))ss do not change appreciably w i t h  

in tens i ty  of reactor radiat ions fo r  e i t h e r  s e t  of rate constants. 

9 equal t o  2.2 x 10 25 

+(n-1)) - Under electron irradiation., a somewhat greater  change i n  (S ss 
occurs with changing in tens i ty .  

Excess H2 may be very e f fec t ive  i n  reducing (H2),, i n  scavenger 

solution as may be seen i n  Figs. 8 and 9 .  

A d d i t i o n a l  understanding of the fac tors  governing rad io lys i s  i n  

scavenger solutions was gained from considerations of re la t ionships  

discussed i n  following paragraphs. 

It has already been stated that ,  i n  pure water, the value of K i n  
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Eq. 1 is dependent upon 

(1) (H2)ss = 

This  dependence r e su l t s  

the  type of radiat ion employed. 

from the difference between the r a t i o  of radi- 

c a l  t o  molecular product yields  fo r  the d i f fe ren t  types of radiat ions.  

For e lectron radiat ions where the r a t i o  of Ge- 

i s  4.9 the value of K given by the  computer r e su l t s  i s  4.6 x 10’%,8 

( w/cc)-’/~. The corresponding values f o r  reactor  radiat ions a re  1.15 

and 1.38 x 10 

+ GOB t o  GH + GB 
aq 2 2-1 , 

-4 . These values suggest that the proport ional i t ies  shown 

by Eqs. 8 and 9 are approximately valid for  these two types of radi- 

at ions,  

where A, C, B, and F a re  the rates of production of He, H202, OH and 

e 

radiat ions i n  which i n  one case the r a t i o  of neutron t o  y-ray energy 

- 
However, similar comparisons of values of (H2),, calculatckd f o r  

aq 

deposition rates was uni ty  and in  another case was two, indicates  a 

value of about 3.5 fo r  the exponent ra ther  than the value of 2. The 

destruct ion of radicals  by scavengers produces a reduction i n  the 

nuniber of radicals  available for  catalyzing the formation of water 

from H2 and H202, and may be regarded as producing a reduction i n  the 

ef fec t ive  y ie lds  of radicals,  and thus i n  the e f fec t ive  values of the 

r a t i o s  shown i n  Eqs. 8 and 9. The magnitude of the ef fec t ive  change i n  

F produced by scavengers can be estimated readi ly  f o r  the cases employ- 

ing  reactor  radiat ions since the e- reac ts  pr incipal ly  with H202 and 
aq 
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S+n. 

is  t h a t  given by Eq. 10. 

The normal reaction i s  that with H202. The e f fec t ive  value of F 

- +n 
Fk24(S ) s s ( ~  aq'ss 

k24(S 
(10) Feff = F - +n 

s s (e  -as) ss + kg( "2'2) s s ( e-aq) s s 

The final. term is the expression for  the rate of react ion of e- 
s+n. 

Rearranging, 

with 
aq 

1 (11) - = 
Feff 

We ,may now write Eqs. 12 and 13. 

Comparison of values calculated from Eq. 13 a n d b y  the  computer code 

shows t h a t  Eq. 13 i s  incorrect and that the values of the exponent must 

be 5 t o  6 rather than 2. However, Eq, 13 w i l l  serve as a bas i s  f o r  

estimating the qua l i ta t ive  e f f ec t s  on (H202)ss or  (H2),, of changes i n  

k24' k25, and a* 

Eq. 14  i s  another equation of i n t e r e s t  which can be derived by 

equating rates of formation and disappearance of S +(n-l) and by sub- 

s t i t u t i n g  f o r  (OH)ss from Eq. 4. 

(H2)ss9 and a se r i e s  expansion of a quadratic equation w a s  employed i n  

the  derivation. 

It was assumed t h a t  (H202)ss equals 
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The relat ionships  ind ica t edby  Eq. 14 are i n  approximate agreement with 

the  computer r e su l t s  f o r  case 1 (Table 8). However, f o r  case 2 (Table 

+( n-1) +n g ) ,  i n  which the  computer calculated values of (S )ss/(s )ss  are 

about 

The incl-ttsion of addi t ional  teras  i n  the series eqans ion  might remedy 

t h i s ,  

assumption t h a t  (H202)ss equals (R2) i s  not valid f o r  these i r rad ia t ions .  

I n  s p i t e  of limited va l id i ty ,  Eq. 14 as w e l l  as Eq. 13 i s  of value i n  

Eq. 13 fails since the term i n  parentheses i s  negative. 

This equation is  no% v a l i d  fcr electron i r rad ia t ions  because the 

estimating e f f ec t s  on radiolysis  of changes i n  various parameters. 

A qua l i ta t ive  explanation f o r  the small difference between 

(H202)ss at, say, 0.5 and 150 w/cc is  evident from Eq. 13. 

increases s l i g h t l y  from the value a t  0.5 w/cc, the f rac t ion  of e- 

(o r  OH) which reac ts  with H202 (or H2) ra ther  than with the  scavenger 

increases so t h a t  the e f fec t ive  y ie ld  of rad ica ls  increases with in-  

creasing ( H202) ss. 

(H202)ss (i .e., with increasing intensi ty)  

of the form of Eq. 1 would prevail. 

As H202 

aq 

If the fract ion d id  not change with increasing 

a square-root re la t ionship 

An increase i n  the value of k24 w i l l  e f f e c t  a subs tan t ia l  in- 

crease i n  (H202)ss unless ( S+n)ss decreases proportionally. For case 

2, i n  which the  assumed values of k2& and k are 2.2 x 10 9 and 
25 

4.7 x lolo,  a fac tor  of t e n  increase i n  the  value 0f kZ4 would probably 

not  decrease ( S9n) ss appreciably, but would increase ( H202) ss. The 

e f f ec t s  of chacges i n  k may be thought of as the e f f ec t s  of corre- 

sponding changes i n  (S For ease 2, a reduction of a f ac to r  of 

t en  f o r  the assumed value w i l l  pwbably have l i t t l e  e f f ec t  on (S 

25 
+n 

lSs. 
+n 

)ss 
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although the f r ac t iona l  increase of (S +(n-l))ss i s  large (see Table 10 

f o r  case 3) .  

(H202)ss appreciably. 

to ,  say, 0.002 M would reduce (S+n)ss by a fac tor  of ten  a t  the  l e a s t .  

Accordingly, a marked reduction i n  (H202)ss would occur. 

For case 1 i n  which the assumed values of k24 and k 

Hence t h i s  postulated change i n  k would not a f f e c t  
25 

Change i n  the value of (a) f o r  case 2 from 0.Om 

are 
25 

8 4.7 x lolo and 3.7 x LO , a fac to r  of t en  decrease i n  k24 would probably 

inzrease the value of (S 

t h i s  change on (H202)ss may be small. 

the  value of k would r e s u l t  i n  a change of the  same di rec t ion  i n  

+n )ss signif icant ly ,  and, thus, the  e f f e c t  of 

On the other hand, a change i n  

25 
An increase i n  the value of (a) f o r  +n (s Iss, and, thus, i n  (H202)ss. 

+n case 1 would r e s u l t  i n  an increase i n  (S )ss, and, thus, i n  an increase 

IX. Possible Importance of Non-Scavenger Reactions. 

Assuming that cer ta in  rate constants and/or coa ina t ions  of 

constants prevail, the  non-scavenger-oxidizing reactions may be of 

importance i n  the radiolysis  and i n  the design of experiments as dis-  

cussed more filly i n  t h i s  section. 

A .  Comparisons Between Reactions 25 and 36 

1. continuous Irradiat ion.  

In  order that e s sen t i a l ly  a l l  of the  reduced species reac ts  with 

H202 ra ther  than OH, it may be assumed the r a t i o  of react ion rates must 

favor the  reaction with K202 by a fac tor  of ten.  The following 

relat ionship must then prevai l .  
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Making the assumption t h a t  (H2)ss equals (H202)ss and subs t i tu t ing  f o r  

(OH)ss from Eq. 4 leads t o  Eq. 16, 

Putt ing i n  the value for  A a t  150 w/cc of reactor  radiations and set- 

t i n g  (H202)ss equal t o  the value of 1.7 x lo-% calculated f o r  pure 

water gives, k ==- 1.8 x k 

must be grea te r  than 1.8 x 10 

Then, i f  k equals, say, 10 9 , 
25 ' 25 
6 

36 
sec'lgM'l,J i n  order t o  eliminate k36 

the scavenger reaction. 

It is  in te res t ing  t o  note tha t  Eq. 16 predicts  a power densi ty  

dependence f o r  the required r a t i o  of k t o  k unless (H202)ss is 

proportional t o  Ill2. As noted previously (Eq. 3) the rate of in-  

crease of (H202)ss i n  scavenger solut ions is  much less than tha t  ex- 

pected f o r  a square-root dependence. Hence, the required r a t i o  of k 

t o  k A s  a resu l t ,  the possi- 

b i l i t y  must be recognized t h a t  the extent  of scavenger act ion w i l l  

increase with increasing intensity.  

scavenger ac t ion  occurs at low in tens i ty  has not been analyzed complete- 

l y  by computation but  it i s  very l i k e l y  t h a t  the  r a t i o  of (H202)sS t o  

(OH)ss i s  independent of I i n  t h i s  case. Accordingly, no change i n  

scavenger act ion w i t h  increasing in t ens i ty  i s  expected i n  t h i s  case, 

36 25 

36 
increases with increasing in tens i ty .  25 

The pa r t i cu la r  case i n  which no 

2. Intermittent Irradiation. 

For systems i n  which the solution is  in te rmi t ten t ly  exposed t o  

radiation, reaction 36 may be  of importance even thmgh k i s  so low 36 
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tha t  it is  not important i n  comparison with react ion 25 during irradi- 

a t ion .  equals lo3 and (H202)ss equals 

3 x lo-%. The r a t e  of destruct ion of S +(n-l) after i r rad ia t ion  i s  

expressed by Eq. 17 if it i s  assumed that (H202) does not change ap- 

preciably during the react ion of S +(n-l) with H202. 

For example, assume that k 36 

Integrating and subs t i tu t ing  values f o r  k36 and ( ~ ~ 0 ~ ) ~ ~  

Equation 18 shows t h a t  the (S +(n-l)) is  reduced rapidly under these as- 

sumed conditions; f o r  example, t o  5 per cent of the i n i t i a l  value i n  

0.5 sec.  The importance of t h i s  consideration is  tha t  the maximum 

concentrations of S +(n-l) which are recorded during intermit tent  ir- 

radiat ions a t  low i n t e n s i t i e s  may be appreciably less than those which 

would prevail  during continuous i r rad ia t ions  a t  the same i n t ens i t i e s .  

If th i s  i s  the case it i s  probable that the  concentrations of other 

m d i o l y t i c  species would a l s o  differ from the one i r r ad ia t ion  

procedure t o  the  other. I n  our considerations of re la t ionships  be- 

tween radiolyt ic  behavior and exposure parameters, it has been assumed 

t h a t  steady-states a re  reached which are representative of those pre- 

va i l ing  during continuous exposure. 

r e su l t s  such as m i g h t  be obtained i n  in te rmi t ten t  i r r ad ia t ion  experi- 

We do not understand how t o  employ 

ments i n  these considerations. 

B.  Comparisons Between Reactions 25 and 37 
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1. Gontinuous I r rad ia t ion .  

Making assumptions analogous t o  those f o r  react ion 36, Eq. 19 must 

preva i l  ir, order t o  suppress reaction 25, 

and Eq. 20 i s  obtained from Eq. 19. 

A (20) k37-L . !k 
0.1 k12(H202)ss(Ho2)ss 

Subst i tut ing the value f o r  A a t  150 w/cc of reactor  radiations,  setting 

(H202)ss equal t o  1.7 x 10-51, and assuming that (H02)ss is  lo-%, 

( i .e., near the maximum value calculated f o r  ( H02)ss) gives, 

k 7 3.2 x 10m2k 

the (H02)ss would probably be l e s s  than 10m5M, but  there i s  no way of 

simply estimating the ac tua l  concentration. 

In  p r w t i c e , i f  reaction 37 does occur importantly, 37 25’ 

It should be noted tha t  the  pKa of H02 i s  about 4.4 so that  the 

pH of the solution must be below about 4 i n  order that the full concen- 

t r a t i o n  of H02 be avai lable  f o r  reaction 37. 

w i t h  0; is probably much slower than w i t h  H02. 

+( n-1) The react ion of S 

The r e su l t s  of the calculations show that the r a t i o  (H02)ss/(OH)ss 

decreases with increasing in tens i ty  i n  scavenger solutions.  Hence, the 

value of r a t i o  of k 

increases w i t h  increasing intensity.  

respect t o  expected changes i n  extent of scavenger e f f ec t s  with chang- 

t o  %5 required t o  suppress reaction 25 probably 37 
The significance of th i s  with 

ing in tens i ty  is  analogous t o  tha t  discussed above f o r  react ion 36. 

2. Intermittent I r radiat ion.  

The expected maximum (H02)ss of about 10-51 is insuf f ic ien t  t o  
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e f f e c t  s ignif icant  changes i n  S +(n-l) after i r rad ia t ion .  Therefore, no 

difference is expected between continuous and intermit tent  i r rad ia t ions  

i f  reaction 37 predominates. 

C. Comparisons Between Reactions 25 acd 38. 

1. Continuous Irradiat ion.  

Making assumptions analogous t o  those f o r  react ion 36, Eq. 21 

must prevail  i n  order t o  suppress reaction 25, 

and Eq. 22 is obtained from Eq. 21, 

Again se t t ing  A a t  the value f o r  150 w/cc of reactor  radiations,  set- 

t i n g  (H202)ss equal t o  1.7 x lo-%, and assuming that (H') equals lo-% 

gives, k =- 3.6 x k25. This re la t ionship  is, of course, ex- 

pected t o  change i n  d i r e c t  proportion t o  changes i n  (H ). It may be 

noted that S +(n-l) and H a re  produced i n  equivalent amounts under ir- 

radiat ion s o  t h a t  i f  (H ) i s  low i n i t i a l l y ,  it may become appreciably 

+ 38 

+ 
+ 

higher during i r rad ia t ion .  

The r a t i o  of ( H+)ss/(OH)ss decreases with increasing in tens i ty .  

Accordingly, the relative importance of the  scavenger react ion 25 i n -  

creases with increasing in tens i ty .  

2. Intermittent I r rad ia t ion .  

On the bases of considerations analogous t o  those discussed fo r  

reaction 36, it i s  apparent t h a t  reaction 38 may produce important 

changes i n  solution during short  in te rva ls  between i r rad ia t ions  even 
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though the reaction i s  unimportant during i r rad ia t ions .  Therefore, the 

r e s u l t s  of experiments employing continuous i r r ad ia t ion  may differ from 

those i n  which i r rad ia t ion  is intermittent.  

D. Formation of S +(n-l) with Non-S cavenger Reactions 

'(n-l)) formation ex i s t s  when The poss ib i l i t y  of appreciable (S ss 

non-scavenger reactions are important j u s t  as it does when the scaven- 

ger  reaction (reaction 25) predominate. 

(S+(n-l)) formation i s  thought t o  be greatest  when scavenger act ion is 

least. The belief is based on the consideration that the rates of the 

The probabi l i ty  of appreciable 

non-scavenger reactions are l ike ly  t o  be low compared w i t h  the rates of 

react ion 24. 

X. Effects  of (H;j04) on Radiolysis of Poison-Control Solutions 

A. Effect  of (H') 

As mentioned previously, the conversion of e- t o  H according t o  
aq 

reaction 22 has a benef ic ia l  effect  on the (H2),, i n  otherwise pure 

water under exposure t o  reactor  radiations.  A much greater  benef ic ia l  

e f f e c t  can be expected i n  the  poison-control solutions since, with the 

possible exceptions of 

reac t  with H a t  appreciable ra tes .  

f i c i e n t l y  large, a l l  scavenger action and a l l  poss ib i l i t y  of appreci- 

able (S '(n-l)) formation as well would be eliminated. The (H') requir-  

ed can be estimated by asswning that the rate of reaction 22 must ex- 

ceed that of reaction 24 by a factor of ten i n  order t o  suppress the 

latter reaction. That is, 

the poison-control cations probably do not 

Thus, i f  the (H') is  made suf- 



The required (H') i s  then, 

> or 
k24 a (24) (H') 5 0.1 
k22 

0 
(25) (H+)> 1.8 x k24 a a t  90 C. 

Now i f  k24 and (a) equal 5 x 1010 and 3 x low3, the (H') must 

exceed 2.7 x 10%. 

ed a t  (H') equal t o  8 x 10-51.) 

(a factor of two-thirds reduction could be obtain- 
+ 

Proportionately higher or lower ( H  ) 

are required as the product k24(a) i s  increased or decreased, 

B. Effect of ( B O 4 - )  
- 

As noted i n  Table 6, B O 4  reacts w i t h  OH (reaction 39) t o  

i n i t i a t e  a scavenger reaction. 

reaction becomes important should not be exceeded, 

Presumably the ( B O 4 - )  a t  which th i s  

This permissible 

(mob-) can be estimated by assuming that the r a t e  of reaction 39 must 

not exceed one-tenth the rate of OH reaction w i t h  H2 and H202. 

( 26) k39( OH) ( ~ 0 4 -  T Q 1( 52C OH) ( ~ 2 )  + 5 4  ( OH) ss ( ~ 2 ~ 2 )  

Introducing values fo r  k12, k14 and k and assuming (H2)ss equals 39' 

(H202) s s 9 

(27)  (Hs04-1-7 11(R2).ss M a t  90°c* 

It i s  apwrent that the value of (Hs04-) a t  the permissible l i m i t  

defined here depends upon the (H2),, and (H202),, which occur i n  the 

absence of a HSO4 effect.  

in tensi ty  and upon the occurrence of other scavenger action. 

- 
It is therefore dependent upon the radiation 

Thus, i n  

pure water a t  0,5 w/cc of reactor radiation, the addition B O 4 -  a t  a 

concentration greater than 1.1 x 10-51 w i l l  produce some scavenger 
- 

action. At 150 w/cc the B O 4  concentration may be as high as 
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1.9 x lo-% before any appreciable scavenger act ion occurs. Now i f  the 

equals say lo'% i n  any system as the r e su l t  of action of other (H*)ss - 
scavengers, E O 4  

producing any additional scavenger action. 

it a lso  seem l ikely tha t  E O 4  a t  a concentration of 0.11 i n  otherwise 

pure water would produce a (%),, of less than 0.OlM (- 200 ps i ) .  

may be added a t  a concentration of 0.llM without 

Turning the argument around, 
- 

X I .  Design of Experiments for TWMR Poison-Control Solutions 

A. 

Experiments, 

Effects of Reduced Species on the Design and abjectives of 

In  designing experiments t o  study radiolysis  of the poison-control 

solutions, it must be recognized that a s ignif icant  concentration of 

reduced species may e x i s t  during i r radiat ion.  The possible presence of 

the reduced species will a f fec t  the design and/or the objectives of the 

experiments i n  several  ways, 

1. Intermittent vs. Continuous Irradiat ion.  

A s  previously discussed, the reduced species may undergo an ap- 

- 

preciable amount of reaction with H202 o r  water after i r radiat ions 

even though these reactions a re  not important during i r rad ia t ion  i n  

comparison with the reaction between the reduced species and radicals.  

Accordingly, the steady-state concentrations during continuous and 

intermittent i r radiat ions m y  differ. A l s o ,  it i s  likely that the 

amount of difference w i l l  change with I. I n  order t o  eliminate un- 

cer ta in t ies  i n  the effects of intermittent i r rad ia t ion  on the concen- 

t r a t i o n  of the reduced species, and t o  simulate as nearly as possible 

the steady-state conditions i n  the TWMR, it w i l l  be necessary t o  employ 
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continuous i r radiat ions,  

proposed previously,’ or of the type which has been ten ta t ive ly  

considered with the ETR-boric acid loop w i l l  not be suitable.  

course, i f  it can be shown tha t  the concentration of reduced species 

i s  negligible i n  a given solution, t ha t  solution can then be studied 

i n  a circulating loop. 

A c i rculat ing loop experiment of the type 

Of 

2. Change i n  Concentration of H 2 A f t e r  I r radiat ion.  

If an appreciable amount of reduced material i s  formed, there i s  

a possibi l i ty  t ha t  the concentration of H2 may change appreciably after 

i r rad ia t ion  is  stopped. This i s  because radicals  (OH and H) are formed 

i n  reactions of the reduced species with H202 and H , and these w i l l  

lead t o  recoxribination of H2 and H202 through the chain reactions, 12 

and 21 (Table 6 of Ref. l), 

+ 

Hydrogen 

material 

ments of 

12. OH + H2 - * +  H20 + H, 

21. H + H202 _9 H20 + OH. 

gas may a lso  be formed by reaction of precipitated,  reduced, 

with water. If the (H2),, i s  t o  be determined from measure- 

hydrogen concentration carr ied out a f t e r  i r radiat ion,  the 

measurements must be completed before the concentration changes ap- 

preciably from that prevailing during i r radiat ion,  or the rate of dis- 

appearance a t  appropriately short  delay times must be determined and 

the results extrapolated t o  zero time. Order of magnitude estimates 

of the delay times which would be tolerable  under extreme conditions 

have been estimated as follows: 

a. Assume S +(n-l) disappears by reaction with H202 i n  reactor 
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experiments, 

36, H202 + S +(n-l) _3 OH + OH- + S+" , 

+(n-l) The maximUm (S which can occur is that given by Eq. 28, 
)ss 

where F i s  the rate of production of e- 

suming t h a t  a l l  e- reac t  with S+n t o  form 
aq 

k ( H  0 ) is small compared t o  k24(S'n)p and 

aq * 

9 2 2  

Eq. 28 was derived by as- 

S+(n-l) ( t h a t  is, t h a t  

t h a t  S +(n-l) reac ts  only 

with H202). In  practice,  the rate  of S +(n-l) formation may be smaller, 

and other reactions of S +(n-l) may be important. 

+(n-l) events, the value of (S 

Eq. 28. 

In e i t h e r  of these 

w i l l  be less than the value given by 
)Sa 

Eq. 29 follows from Eq. 28, 

The change i n  (S +(n-l)) a f t e r  time (t) following i r rad ia t ion  i s  given 

by Eq. 30 if  it i s  assumed t h a t  (H202) does not change appreciably 

as a r e su l t  of the reaction 36 o r  other reactions.  

Estimtes of changes i n  S +(n-l) based on Eqs. 29 and 30 f o r  several  

power dens i t ies  of reactor  radiations, and f o r  several  asswned values 

of (S+(n-l))ss and delay times are l isted i n  Table 13. Also l is ted 

are values f o r  estimated t o t a l  and percentage changes i n  (Ho).  Values 

f o r  t o t a l  changes i n  

t h e  reaction of f i v e  

shown i n  Fig. 2 were 

c 

(H2) were obtained by assuning t h a t  each OH l e d  t o  

H2 t o  form water. The calculated values of (H2)ss 

employed i n  a r r iv ing  at percentage changes. These 
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estimates indicate tha t  the resu l t s  of measurements as a function of 

delay times of t o  10-l sec w i l l  enable evaluations of (H2)ss a t  

a l l  parer dens i t i e s  which are l ike ly  t o  be used i n  reactor experiments. 

Because of the extreme conditions assumed i n  these estimates, it i s  

l i k e l y  t h a t  somewhat larger  delay times can a l s o  be used. 

It m y  be noted that the ac tua l  measurements of (H2) need not be 

made a t  the given delay time. 

reaction between OH and H2 a t  the desired t i m e .  

ed by mixing a scavenger f o r  OH in to  the solution ( for  example, H202) 

o r  by stripping the He from the  solution. 

amount of H2 can then be made a t  any time. 

It i s  only necessary t o  suppress the 

This can be accomplish- 

The measurements of the 

It may a l so  be noted that i f  the delay time is lom3 sec the dif- 

ference between (H2) and w i l l  be negligible.  

b.  Assume S +(n-l) Disappears by Reaction w i t h  H202 i n  Van 

de Graaff Experiments. --Estimates of changes i n  (S +(n-l)) and (a,) 
a f t e r  exposure t o  Van de Graaff electrons were made by the method 

described i n  the preceding paragraphs. The r e su l t s  are l is ted i n  

Table 14. 

as a function of delay times of 

low in tens i t ies ,  

make measurements within lo’* t o  

They indicate that measurements of hydrogen concentration 

t o  lom3 sec would be sui table  a t  

However, a t  50 t o  150 w/cc it may be necessary t o  

sec after i r radiat ion.  

c. Assume S +(n-l) Disappears by Reaction w i t h  Hydrogen Ion.- 

If it i s  assumed tha t  S +(n-’) disapgears 

which can occur i s  given (S+(n-l)) 
ss 

+ by reaction with H , the maxi- 

by Eq. 31. 
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The maximum change i n  (S +(n-l)) a given time after i r rad ia t ion  is  given 

by Eq. 32. 

E q s .  31 

estimat 

same as 

H2°2* 

and 32 a re  analogous to Eqs. 28 and 30, and the resu l t s  of 

s f o r  reactor radiations aEd Van de G r a a f f  e lec  ,rons are the 

those described f o r  the cases i n  which the S +(n-l) reacts  with 

d. Assume Precipitated, Reduced, Material Reacts w i t h  Water 

t o  Form H2.--Estimates of the maximum changes i n  the amount of reduced 

material which can occur i n  a given delay period can be made by the 

methods employed f o r  the H202 reaction w i t h  S +(n-l), and the resu l t s  

a r e  the same as those f o r  the R202 reaction. 

act ion of the product occurs i n  th i s  case so that the maximum per- 

centage changes i n  (H2) a f t e r  a given delay period are  smaller. 

However, no chain re- 

The resu l t s  of these estimates show that the (H2),, i n  reactor 

experiments must be measured during exposure t o  radiation, or  the (H2) 

must be measured or the reaction affect ing (€$) must be suppressed 

a f t e r  delay periods which do not exceed lom2 t o  10-l sec, 

i f  it i s  demonstrated that no change i n  (B2) occurs after i r radiat ion,  

the (H2),, can be measured a t  any time. 

produced by reaction of precipitated material with water, the reaction 

cannot be suppressed, and it w i l l  be necessary t o  evaluate the amount 

of H2 produced i n  this  way from other information regarding the amount 

of precipitated material. 

O f  course, 

I n  the event that H2 is 
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For electron i r rad ia t ions ,  the r e s u l t s  of estimates show that the 

(H2) must be measured after delay times which do not exceed t o  

sec i n  high power density experiments, or, a l te rna t ive ly ,  that the  

( H2) ss be measured during exposure. 

3. Solution S tab i l i t y .  

Because of the poss ib i l i t y  that an appreciable concentration of 

reduced solute may be formed, there  i s  a l s o  a poss ib i l i t y  that  a soh- 

t i o n  w i l l  be unstable t o  some extent &wing i r rad ia t ion .  T h a t  is, the  

reduced material may prec ip i ta te  on surfaces or  form suspended so l id s  

faster than prec ip i ta ted  material i s  redissolved. 

t he  solution by prec ip i ta t ion  on surfaces would a f f e c t  the interpre-  

t a t i o n  of the r e su l t s  of measurements of rad io ly t ic  gas pressures, and 

a l s o  a f f ec t  the  usef’ulness of the solut ion i n  the  TWMR. Formation of 

suspended solids would a l s o  a f f ec t  the in te rpre ta t ion  of the  experi- 

mental resu l t s  but would not necessarily a f f ec t  the  usef’ulness of the 

solut ion i f  the  l ife-t ime of suspended so l ids  were su f f i c i en t ly  short .  

Accordingly, it w i l l  be necessary t o  evaluate the s t a b i l i t y  of a solu- 

t i o n  under i r rad ia t ion  as w e l l  as the extent of r ad io ly t i c  decompo- 

s i t i o n  of the solvent. 

Loss of so lu te  from 

B. Other Experimental Requirements 

Other experinrental requirements which may be restated here are: 

(1) the  temperature should be closely controlled since steady-state 

concentrations a re  temperature dependent, and (2) the r a t i o  of neutron 

t o  y-energy deposition rates i n  H20 i n  reactor  experiments should be 

the same as t h a t  expected i n  the TWMR i f  the  experimental r e s u l t s  are 
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t o  be extrapolated t o  "WMR conditions without benef i t  of a complete 

knowledge of rad io ly t ic  yields, reactions, and rate constants. 

C .  Methods of Determining (Hz)sse 

As stated previously, the i n i t i a l  experiments must be designed t o  

measure (H2>,, during i r r a d i a t i o n  or  within a very short  period a f t e r  

i r r ad ia t ion .  

delay times have been considered, 

Several methods of determining (H2),, a t  zero o r  short  

1. 

a. Measurement of Pressure Above Irradiated Solutions.-One 

Determimtions of (H2),, During I r rad ia t ion .  

method which has been considered i s  tha t  of measuring the pressure 

generated within a gas phase i n  contact with the irradiated l iqu id ,  

This method i s  complicated since any gas space large enough t o  be use- 

f u l  i n  measuring equilibrium gas pressures w o u l d  contain a large 

f r ac t ion  of the gas within the system, and the gas would be r i ch  i n  H2 

since,  i n  general, a majority of oxidant ex i s t s  as H202. 

dant would thus be formed i n  solution and would alter the rad io ly t ic  

behavior. 

of volumes of gas t o  l i qu id  spaces i n  order t o  al ter the f rac t ion  of H2 

which is  i n  the gas space. 

may not be possible t o  achieve a steady-state i n  which the concen- 

t r a t i o n  of excess oxidant is near a value of i n t e r e s t  (a-values rang- 

ing  from zero t o  about -2 x 10-31 a re  of i n t e r e s t ) .  

Excess oxi- 

It is, of course, possible t o  add H2 and t o  vary the r a t i o  

However, even with such modifications, it 

Thus, consider a system i n  which no H2 i s  added i n i t i a l l y .  The 

relat ionship between a and other parameters i n  t h i s  system is given by 

Eq. 33, 
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1-2K” 
1+K” 

- 33 p’( 1 ,  ( 3 3 )  QVQ - RT 

where Vi and V 

clave, R i s  the gas constant (1.21 -1, K ” i s  t h e  r a t i o  of the  

pressure of 0, t o  t h a t  of H,, and P’is the observed gas pressure during 

i r rad ia t ion .  Typical values of K” given by the r e s u l t s  of calculations 

f o r  reactor  radiat ions are near 0 .1  f o r  Q near zero. However, the value 

of K”probab1y increases w i t h  increasing values of Q. Since the value 

of Q increases w i t h  increasing P; the increase i n  pressure may be l i m -  

i t e d  only by the increase i n  K”. (Radiation induced recombination i n  

the gas phase may a l s o  a id  i n  l imit ing the pressure). The observed 

pressure i n  t h i s  case i s  of no i n t e r e s t  i n  t h i s  work. Certain experi- 

mental resu l t s  reported by others can be regarded as support fo r  these 

conclusions (Ref. 6, p. 577). 

a re  the volumes of l iqu id  and gas spaces i n  an auto- 
g 

s i  Q 
mole, K 

Now i f  H2 i s  added t o  the system while the  pressure i s  high, the 

value of a w i l l  decrease, and a condition should be reached, as H, i s  

added, i n  which the pressure starts t o  decrease as a r e s u l t  of the re- 

combination of H, and oxidant. This decrease w i l l  reduce the value of 

a s t i l l  fur ther  and r e s u l t  i n  addi t ional  recombination of H2 and oxi- 

dant. 

whether the pressure would decrease t o  t h a t  of the added H, or l eve l  

off a t  some intermediate value. I n  the event the la t te r  behavior 

occurs, it i s  l i k e l y  t h a t  the Q value could be adjusted as desired, 

and the system would be useful  i n  determining the steady-state concen- 

t r a t ions  of radiolysis  products. It may be added t h a t  the behavior of 

The system i s  not completely understood and it i s  not known 
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the system when H2 i s  added i n i t i a l l y  is  a l s o  not understood. In  t h i s  

case there i s  a poss ib i l i t y  that, once started, the  pressure continues 

t o  r i s e  t o  a value l imited by the increase i n  K:’ 

Experiments a re  required t o  es tab l i sh  the  behavior and possible 

usefulness of t h i s  system. 

b.  Measurement of V - vs P In  a One-Phase System.--In pr inciple ,  

the vapor pressure of a gas dissolved i n  solut ion can be determined by 

measuring the overpressure a t  which gas bubbles form i n  solution. In  

i r r ad ia t ion  experiments, such measurements would be car r ied  out using 

an autoclave system completely f i l led with solut ion and connected t o  

equipment outside of the radiation zone and shields by means of a small 

tube which would a l s o  be f i l l e d w i t h  solution. An increase i n  the 

l e v e l  of the l i qu id  i n  the tube as the overpressure i s  decreased w i l l  

indicate  the formation of gas-vapor bubbles within the  autoclave. In  

pract ice ,  the sens i t i v i ty  of the method w i l l  be a f fec ted  by supersatu- 

ra t ion,  and the s u i t a b i l i t y  of the method must be established experi- 

mentally. 

chieved i n  reactor  experiments where the expected minimum gas pressure 

a t  0.5 w/cc i s  about 2 p s i ,  

be su i tab le  fo r  use i n  Van de Graaff experiments where high power 

dens i t i e s  and vigorous s t i r r i n g  are employed and where the expected 

minimum pressures range from about 0.2 p s i  at  4 w/cc t o  1 p s i  a t  

150 w/cc. 

It seems likely that a fair  degree of accuracy can be a- 

It is less l ikely t h a t  t h i s  method would 

2. 

The poss ib i l i t y  of determining the steady-state concentration of 

Determination of (H2)ss After I r rad ia t ion .  
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H2 during exposure from the r e su l t s  of measurements car r ied  out a f t e r  

exposure has been mentioned previously. 

ments of H2 must be accomplished during short  delay times, or  the 

poss ib i l i ty  of back reaction of H2 w i t h  OH must be eliminated during 

the short  delay times by separating the gas from the solut ion or  by 

adding a scavenger of OH t o  the  solution. The permissible delay times 

f o r  Van de Graaff experiments a re  so shor t  t h a t  it seems un7ikely t h a t  

post- i r radiat ion measurements are feasible .  The delay times may be 

grea te r  i n  reactor experiments (10 

provisions can be made f o r  mixing the solut ion w i t h  an OH scavenger 

within the permissible delay periods. However, fur ther  consideration 

of mixing methods and some experimentation a r e  required t o  es tab l i sh  

the  s u i t a b i l i t y  of t h i s  method. The separation of t he  gas from the 

l i qu id  within short  delay times is  less l i k e l y  t o  prove feas ib le .  

These post- i r radiat ion measure- 

-2 t o  10-1 sec) ,  and it i s  l i k e l y  t h a t  

3. Summary 

No simple method i s  avai lable  f o r  determining steady-state concen- 

t r a t ions  of rad io ly t ic  gases i n  solut ions,  Several methods have been 

considered which may prove su i tab le  fo r  accomplishing these de t emi -  

nations i n  reactor experiments. 

which measurements a re  made of the pressure a t  which gas bubbles form 

holds the  most promise. 

the accuracy which can be achieved with t h i s  method o r  with any of the 

other methods considered. 

measurements made after i r rad ia t ions  are probably not feasible i n  Van 

de G r a a f f  experiments. 

It i s  believed t h a t  the  method i n  

Experimental work is  required t o  es tab l i sh  

The methods of determining (s),, from 

Also, other methods a r e  less l i k e l y  t o  prove 
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feas ib le  for Van de Graaff than f o r  reac tor  experiments because of the 

low concentrations and low solution volumes which w i l l  p reva i l  i n  the  

former experiments. 

D. Methods of Determining Solution S t a b i l i t y  

The obvious and most feasible  method of determining whether solute 

i s  l o s t  from solution i s  t o  expel the  solut ion from the autoclave during 

i r r ad ia t ion  and then determine the concentration of the solute i n  the 

expelled solution. A f i n e  f i l t e r  a t  the entrance t o  the  sample l i n e  

w i l l  r e t a i n  suspended so l ids  i n  the autoclave. The s e n s i t i v i t y  of t h i s  

method w i l l  be d i r ec t ly  proportional t o  the sens i t i v i ty  of the chemical 

analyses. Presumably, s ens i t i v i t i e s  of about one per cent or b e t t e r  

can be achieved. 

In-p i le  as wel l  as Van de Graaff experiments can be equipped t o  

car ry  out determinations of loss of solute .  

s t a b i l i t y  experiments may be separate from those designed t o  measure 

gas concentrations. No gas space w i l l  e x i s t  i n  a s t a b i l i t y  experiment, 

and expulsion of the solution w i l l  be accomplished by compressing the 

autoclave. 

XII. Recommended Experimental Program 

It may be noted t h a t  these 

Discussion.--The experimental approach which w i l l  be required w i l l  

depend t o  a large extent  upon whether scavenger ac t ion  or an appreciable 

concentration of reduced solute  o r  both a re  expected i n  the  solut ion of 

i n t e r e s t .  If va l id  reasons ex i s t  f o r  believing tha t  nei ther  scavenger 

ac t ion  nor reduced solute occurs i n  a given solution, the concentration 

of r ad io ly t i c  prcducts can be determined i n  a n  autoclave experiment i n  
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which the solution is  withdrawn and analyzed a t  a convenient time. A 

loop can a l so  be employed if t h i s  is  desirable. The maximum pressure 

which w i l l  occur a t  TWMR i n t e n s i t i e s  can be confidently predicted from the  

r e su l t s  of measurements a t  some low in t ens i ty  (say 0.5 w/cc i n  the LITR) 

using the square-root re la t ionship.  

predicted values it w i l l  be desirable t o  carry out an experiment at  an- 

other, higher intensi ty ,  (say 5 w/cc i n  the ORR o r  1 5  w/cc i n  the  Em), 

the other hand, i f  scavenger act ion o r  appreciable reduced solute  or both 

may occur, the experiments must be of the type i n  which continuous irradi- 

a t ion  i s  employed and (H2),, is  determined during or  shor t ly  a f t e r  irradi- 

a t ion .  The solution s t a b i l i t y  during i r r ad ia t ion  must be determined over 

a range of power dens i t ies  up t o  in t ens i t i e s  comparable t o  those of the 

TWMR i n  order t o  demonstrate t h a t  the solut ion w i l l  be su i tab le  i n  "MR. 

Van de Graaff experiments at  in t ens i t i e s  up t o  150 w/cc can be employed 

f o r  these solution s t a b i l i t y  s tudies .  

it w i l l  be necessary t o  show whether a scavenger ac t ion  occurs, and, i f  

so, the extent of the scavenger act ion i n  in-pi le  experiments a t  avai lable  

in t ens i t i e s  (say 0.5 w/cc i n  the  LITR). 

the maximum pressures at  TWMR i n t ens i t i e s  can probably be predicted from 

the low in tens i ty  result using the square-root relationship,  bu t  ad- 

d i t i ona l  computer calculations and, possibly, addi t ional  experiments a t  

higher i n t ens i t i e s  are required t o  confirm t h i s .  

occurs, additional computer calculations and, possibly, addi t ional  ex- 

periments at  higher i n t ens i t i e s  a r e  required t o  determine the maximum 

pressure a t  TWMR i n t ens i t i e s .  Van de G r a a f f  Experiments t o  determine 

In order t o  add confidence t o  the 

On 

Assuming t h a t  the solut ion i s  s table ,  

If no scavenger act ion occurs, 

If scavenger act ion 
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(H2)ss over a range of i n t ens i t i e s  up t o  150 w/cc would a i d  grea t ly  i n  

extrapolat ing the r e s u l t s  of low in t ens i ty  reac tor  experiments. 

There i s  reason t o  believe t h a t  no scavenger act ion w i l l  occur i n  

exceeds a value which i s  dependent + ce r t a in  solut ions i n  which t h e  (H 

upon t h e  r a t e  constant f o r  reduction of solute by e' and upon the con- 

centrat ion of solute .  Assuming that  separated isotopes a r e  employed, 

the concentrations of (H 

a r e  about 0.0014 M and 0.3 M. There i s  reason t o  believe t h a t  boric  

acid w i l l  not be reduced by e' The product 

of the  OH react ion would probably r eac t  with reducing rad ica ls ;  thus a 

scavenger ac t ion  with H3B03 may occur. 

w e l l  as e- 

scavenger ac t ion  o r  reduced solute. 

aq 

+ required i n  solutions of Gd2(so4)3 and CdzsO, 

but it may reac t  with OH. 
aq  

San,(SO,), may reac t  with H as 
+ 

so t h a t  additions of H w i l l  not necessar i ly  eliminate 
aq 

A summary of an experimental program f o r  evaluating the s t a b i l i t y  

and gas generation of poison-control solut ions i n  the TWMR i s  given i n  

Table 15. 

attended by H. W. Davison and M. Krasner of L e w i s  hbora tory  and 

E. G. Bohlmann, J. C. Griess, and G. H. Jenks or ORNL. 

Most of t h i s  summary was developed during a conference 

Program f o r  Cadmium Sulfate  Solution.--It  has  been decided by L e w i s  

hbora to ry  t h a t  solutions of CdSO, having a pH of about 2 should receive 

f i rs t  consideration i n  the  experimental program. There i s  a poss ib i l i t y  

of formation of reduced solute and of scavenger ac t ion  with t h i s  solu- 

t i on .  The proposed experimental program f o r  t h i s  solution i s  the  

following: 

A. Design and develop equipment and procedures f o r  invest igat ing 
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the steady-state gas pressure and the solution s t a b i l i t y  during expo- 

sure i n  the LITR. An important pa r t  of t h i s  development w i l l  be mea- 

surement of the r a t e s  of energy deposition i n  H20  of neutrons and y-rays 

and t h e i r  adjustment t o  a r a t i o  near t h a t  which w i l l  p reva i l  i n  the TWMR 

(two neutrons t o  one y-ray). 

The gas pressure experiments w i l l  be of the autoclave type. 

ment and procedures w i l l  be included f o r  expelling and col lect ing the 

solution, and f o r  analyzing the collected solution a t  a convenient t i m e .  

F a c i l i t i e s  w i l l  a l so  be included f o r  determining (H ) during or short- 

l y  a f t e r  i r radiat ion by some method y e t  t o  be developed. A s  discussed 

previously, the bubble formation-pressure method i s  considered promising 

and t h i s  method w i l l  be t r i e d  f i rs t .  It  i s  expected t h a t  in -p i le  experi- 

ments with H 2 0 ,  D20, and possibly other solutions i n  which the steady- 

s t a t e  concentrations a re  known, w i l l  be required i n  the development and 

t e s t ing  of the bubble formation method (or a l te rna t ive  method). 

not anticipated t h a t  forced convection w i l l  be required t o  control  t e m -  

perature i n  LITR experiments. The autoclaves will be constructed of 

Zircaloy-2. 

Equip- 

2 ss 

It i s  

The experiments f o r  determining solution s t a b i l i t y  w i l l  a l so  be of 

Equipment and procedures w i l l  be provided f o r  ex- the autoclave type. 

pe l l ing  the solution through a f i l t e r  and analyzing the separated solu- 

t ions.  Area t o  solution volume r a t i o s  w i l l  be one of the controlled ex- 

perimental parameters. 

B. Design and develop equipment f o r  determining the s t a b i l i t y  of 

solutions during exposure t o  Van de Graaff e lectrons a t  dose r a t e s  up t o  

150 w/cc. These experiments w i l l  a l s o  be of an au.toclave type. Equipment 
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and procedures w i l l  be provided f o r  expel l ing the solut ion through a 

f i l t e r  during i r r ad ia t ion  and analyzing the separated solutions.  A s  

p a r t  of the development work f o r  experiments, it w i l l  be necessary t o  

design equipment and techniques which w i l l  enable adequate temperature 

control  a t  the high rad ia t ion  power dens i t i e s  which w i l l  be used. 

layers  of solut ion i n  contact w i t h  conducting surfaces, or s t i r r i n g  of 

somewhat thicker  layers  a re  possible approaches. 

solut ion which can be employed i s  about 0.3 cc. 

t i o n  volume r a t i o s  w i l l  be one of the controlled parameters. 

Thin 

The maximum volume of 

Surface area t o  solu- 

It will a l s o  be necessary t o  determine and, possibly, make provi- 

s ions f o r  control l ing the uniformity of the  electron current over the 

surface of the autoclave c e l l .  

r e n t  and dose rate i n  the solution must a l s o  be determined. 

The re la t ionship  between observed cur- 

C. Determine steady-stage concentrations i n  H20 and D,O i n  the  

LITR a t  (1) several  concentrations of excess H, and D,, f o r  example, 

&values of 0, -5 x lo-,, -1 x 

(2) a t  several  concentrations of su l fur ic  acid,  f o r  example, pH 7, 5, 

3, 2, and 1, and ( 3 )  a t  several  temperatures, f o r  example, 60, 75, 90, 

and l l O ° C .  

D. 

-2 x and possibly lower, 

Determine steady-state D, concentrations i n  the LITR f o r  D20 

solut ions of CdSO, a t  pH 2, a equal t o  zero, and temperatures of 60 t o  

9OoC. 

s tudies .  

Also confirm solution s t a b i l i t y  i f  indicated by Van de Graaff 

E. Determine solution s t a b i l i t y  under i r r ad ia t ion  by Van de Graaff 

e lec t rons  a t  i n t e n s i t i e s  up t o  150 w/cc. 

excess H,, pH and temperatures similar t o  those mentioned i n  (C) should 

Ranges of concentrations of 
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be tes ted.  

of solution s t ab i l i t y .  

during electron i r rad ia t ions .  

The Van de Graaff experiments w i l l  provide a severe t e s t  

That i s ,  i n s t a b i l i t y  i s  most l i ke ly  t o  appear 

F. The work which w i l l  follow w i l l  depend upon the r e su l t s  obtained; 

especial ly  the r e su l t s  of D and E.  

1. If the (D2)SS observed i n  (D) i s  above about 2.3 x M, 

it i s  very l ike ly  t h a t  the  (D2)SS i n  the same solutions and a t  the same 

temperature i n  the ’I”wMR w i l l  exceed the tolerable  l i m i t  of about 

2.5 x lo-, M. 

may reduce the (D2lSS during i r r ad ia t ion  t o  a l eve l  a t  which the solu- 

t i o n  may hold some promise f o r  use i n  TWME3. The e f f ec t s  of such solu- 

t i on  composition changes should be tested.  

+ An increase i n  the (D ) or  addition of excess D, or both 

2. If the (D2)ss  i s  below 2.3 x lo-, M, and the solution i s  

stable,  there i s  a poss ib i l i t y  t h a t  the solution w i l l  prove useful i n  

the TWMR. Additional experiments and considerations of experimental 

resu l t s ,  including the following, should then be carr ied out.  

a .  In-pile experiments t o  determine radiolysis  under cog- 

d i t i ons  of i n t e re s t  should be performed. 

b.  Employ r e su l t s  i n  computer calculations t o  determine 

the probable (H21ss a t  TWMR conditions, and the probable uncertainty i n  

the extrapolated value. Possible values of rate constants f o r  d i f f e ren t  

react ions of the solute would be assumed i n  these calculations i n  order 

t o  estimate the uncertainty i n  the extrapolated value. 

G.  Depending upon the r e s u l t s  obtained i n  (F), including the re- 

s u l t s  of analyses of the data, it may be desirable  t o  car ry  out addi t ional  

in -p i le  experiments a t  higher i n t e n s i t i e s  t o  provide fo r  b e t t e r  extra- 

polation t o  TWMR fluxes; however, design of such experiments must depend 
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heavily on the  experience and r e su l t s  obtained i n  the program described 

above. Temperature control  w i l l ,  of course, be more d i f f i c u l t  i n  these 

higher power densi ty  experiments. 

A similar procedure would be followed i n  the invest igat ion of other 

poison-control solut ions with the exception of those f o r  which nei ther  

scavenger act ion nor appreciable reduce solute are believed possible.  

Acidified solut ions of Gd, (S04)3  comprise the l a t t e r  c lass .  

i s  believed t h a t  s t a b i l i t y  experiments employing Van de Graaff i r rad i -  

a t ions  would a l s o  be made with Gd,(So,), solutions i n  order t o  uncover 

unforeseen fac tors ,  i f  any. A few in-p i le  experiments with these solu- 

t i ons  w i l l  a l s o  be required. Investigations with H,BO, solut ions would 

include experiments with solutions containing boron-11, but no boron-10, 

i n  order t o  determine scavenger action of H,BO,. 

However, it 
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APPENDIX I 

Derivation of Final  Terms i n  Eqs. 5b and l b  

These terms were derived by equating r a t e s  of formation and d i s -  

appearance of S+" and S +(n-l) according t o  react ions 24 and 25. 

example, 

For 

+n d ( s  ISs 
d t  ss = 0 = k25(OI!)SS(S +(n-l)) -k24(e- a q  ss (Sfn)ss 

a l s o  
+n  IS+("-^)) + ( S  = a 

or 

then 

+ (n- 1) 
) s s  + (n- 1) - k (e- ) ( S  k,, (OH)ss ( S  ss =ak24(e,q)ss 24 a q  s s  

and 

Now according t o  react ion 25, OH reac ts  with S+(n-l). The rate a t  

which OH i s  l o s t  i n  t h i s  react ion i s  j u s t  

, 
The term on the r i g h t  i s  the f i n a l  term i n  Eq. l b  on p. 4 .  The 

appropriate terms for the other equations on p.  4 are derived s imilar ly .  
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An Evaluation of The Chemical Problems 
Associated With The Aqueous Systems i n  The 

Tungsten Water Moderated Reactor, Addendum 2. 

J. C.  Griess 

Corrosion of Hard-coated Aluminum Specimen 

Three hard-coated 6 0 6 ~ ~ 6  aluminum specimens were subjected t o  test 

i n  water and i n  a cadmium sul fa te  solution, and a fourth specimen was 

sectioned t o  determine the thickness of the  coating. 

supplied by M r .  H. W .  Davison. 

coated w a s  not specified except t h a t  an anodizing procedure was used. 

The i n i t i a l  film thickness on the specimen tha t  was sectioned was 0.001 

in. ,  and the surface hardness was 357 diamond pyramid hardness (35 Rock- 

The specimens were 

The manner i n  which the specimens were 

well  c ) .  

The conditions of exposure and r e su l t s  

Environment Temperature, 
OC 

0.m cdso4 150 

H2° 30 

H2° 150 

were : 

Time, W t .  Chan e, - h r  mg/cmB 

1000 - 1.2 
1380 + 0.1 

1500 + 0.8 

In a l l  cases the specimens retained t h e i r  or iginal  appearance and 

no v is ib le  deposits were present on any of the surfaces. The specimen 

exposed t o  the cadmium sul fa te  solution was t reated w i t h  &l HNO 

6ooc f o r  30 minutes after the f irst  50-hr exposure and again a t  the end 

a t  3 

of the test t o  remove absorbed cadmium, Analysis of the n i t r i c  acid 

solution indicated tha t  after 50 h r  the surface contained 12 pg of 

cadmium/cm2; a t  the end of t h e  tes t ,  cadmium on the surface amounted t o  
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2 39 pg/cm . 
specimen accounted f o r  a t  l e a s t  some of the weight loss  observed a t  the 

end of the t e s t .  

It is  probable that the  two n i t r i c  ac id  treatments of the 

Similar tests i n  which untreated aluminum specimens were exposed 

t o  0.2M CdSOk at 150°C showed heavy corrosion of the aluminum accompafi- 

i ed  by the deposition of large amounts of metal l ic  cadmium on the sur- 

face of the aluminum.' The hard-coat on the aluminum, therefore,  was 

very beneficial  i n  protecting the aluminum. It i s  highly improbable, 

however, that a system as complex as the poison-control system of the 

TWMR couldbe coated completely after assembly by such a process. Any 

uncoated areas or regions where cracks or  defects i n  the coating occur 

would be subject t o  a t tack .  

'5. C. Griess, G.  H. Jenks, D.  M. Eissenberg, and E. G ,  Bohlmann, "An 
Evaluation of the Chemical Problems Associated with the  Aqueous System 
i n  the Tungsten Water Moderated Reactor, ORNL-TM-913, August 1964. 
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Table 6. Reaction of Probable Importa ce i n  Radio1 
of Poison-Control S h u t i o n  

.si  s 

Rate Assumed 
Constant a t  Act ivat ion 

Number Type Reaction (sec-l,M-l, a> (Kca1,M-l) 

o r  near 25OC Energy 
Reaction 

31 

32 

33 

34 

25 

35 

36 

37 

39 

40 

41 

42 

Reducing 
~ m + ~  + e -  ----+%I 

~ d + ~  + e- --- G ~ I I  
aq 

aq  
+ e- ----+ CdI 

aq 

H,BO, + e- ---- H,BO; + H 
aq 

Oxidizing 

Scavenges 

Comparison Fe+2 + OH - Fe + OH- 

Comparison E d 1  + OH - E u + ~  + OH- 

S+(n-l) + OH - s'" + OH- 
+3 

+2 Comparison sn + OH ---+ MII + OH- 

Scavenger S +(n-l)+ H + Sfn + H, 
+2 H+ Comparison Fe + H - FeI I I  + H, 

Non-scavenger S+("-')+ H202+ S'" + OH + OH- 

+3 Comparison Fe+2 + H,O, - Fe +a+ OH- 
Comparison Fe + D202-Fe + O D +  OD- +2 +3 

Non-Scavenger S+(n-l)+ H0,- H+ s+" + H 2 0 2  

H+ +3 Comparison 

Non-Scavenger 

H2S04 Reactions 

Fe+2 + HO, -Fe + H 2 0 2  

S+(n'l)+ H+- S"" + H 

HSO; + OH - HS0, + OH- 

Scavenger HSO, + e- -Hm; 
aq  

Scavenger H S ~  + H AHSO; + H' 

Scavenger HSO, + S +(n-l), HS0; + s+n 

R e f .  8 %ef.  13 

Ref. 14 
Ref. 12 fRef. 15 

a 

b R e f .  9 e 

C 
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Table 7. Additional Reactions of Possible Importance i n  Radiolysis 
of Poison Control Solutions 

Number Rea.c t i on 

43  SI^+^ + H + Sm I1 + H+ 

44 

45 Sn I1 + e' -+ Sm I 

46 I + s m  11 -+ Smo + ~ m + ~  

aq 

47 

48 

Cd I + e' --.) Cdo 
aq 

Cd I + Cd I --i, Cdo + Cd'2 

49 H3B03 + OH 3 ? 
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Table 12. Calculated Concentrations of Radiolytic Products i n  
Scavenger Solutions Under Electron I r rad ia t ions  

Species 

Concentration (M) a t  Listed 
Radiation In t ens i t i e s  (w/cc> 

15 0 50 0.5 

3.393-8 

4.77E-4 

3.753-5 

5.253-6 

5.50E-4 

7.4OE-10 

3.323-9 

2E-2 

2.OE-5 

1.4E+4 

1.6E+2 

1.39E- 8 

4.323-4 

9.123-6 

2.833-6 

4.46E-4 

2.57E-10 

3.653-9 

2E- 2 

1.7E-5 

3.u+4 

2.OE+2 

2.10E- 10 

3.05E-4 

1.323-6 

3 -493-7 

2.9'773-4 

2.793-12 

1.79E-10 

2E- 2 

1.2E-5 

1.5E+6 

1.7E+3 

Case 5 

a = 0.02 M 

= 2.2 x lo9 k24 

k2, = 4.7 x l o l o  

a = 0.0 

(H+) = 1 x 10-5 M 
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Figure 2. Calculated (H2Iss  i n  Water Under Exposure t o  Reactor 
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Figure 4 .  Calculated (H2) i n  H20 with Varying Amounts of 
Excess H2. Reactor Radiations $Hydrogen Ion Concentration - M ) .  
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Figure 9. 
Amount of Excess H, . 
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